Telegram Group & Telegram Channel
Введение_в_автоматизированное_машинное_обучение_2023_RU_+_EN.zip
20.8 MB
📗 Введение в автоматизированное машинное обучение [2023] Хуттер, Коттхофф, Ваншорен.

Ошеломляющий успех коммерческих приложений машинного обучения (machine learning – ML) и быстрый рост этой отрасли создали высокий спрос на готовые методы ML, которые можно легко использовать без специальных знаний. Однако и сегодня успех практического применения в решающей степени зависит от экспертов – людей, которые вручную выбирают подходящие архитектуры и их гиперпараметры. Методы AutoML нацелены на устранение этого узкого места путем построения систем ML, способных к автоматической оптимизации и самонастройке независимо от типа входных данных. В этой книге впервые представлен всеобъемлющий обзор базовых методов автоматизированного машинного обучения (AutoML). Издание послужит отправной точкой для изучения этой быстро развивающейся области; тем, кто уже использует AutoML в своей работе, книга пригодится в качестве справочника.

📘 Automated Machine Learning: Methods, Systems, Challenges [2019] Frank Hutter, Lars Kotthoff, Joaquin Vanschoren

This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself.



tg-me.com/physics_lib/11731
Create:
Last Update:

📗 Введение в автоматизированное машинное обучение [2023] Хуттер, Коттхофф, Ваншорен.

Ошеломляющий успех коммерческих приложений машинного обучения (machine learning – ML) и быстрый рост этой отрасли создали высокий спрос на готовые методы ML, которые можно легко использовать без специальных знаний. Однако и сегодня успех практического применения в решающей степени зависит от экспертов – людей, которые вручную выбирают подходящие архитектуры и их гиперпараметры. Методы AutoML нацелены на устранение этого узкого места путем построения систем ML, способных к автоматической оптимизации и самонастройке независимо от типа входных данных. В этой книге впервые представлен всеобъемлющий обзор базовых методов автоматизированного машинного обучения (AutoML). Издание послужит отправной точкой для изучения этой быстро развивающейся области; тем, кто уже использует AutoML в своей работе, книга пригодится в качестве справочника.

📘 Automated Machine Learning: Methods, Systems, Challenges [2019] Frank Hutter, Lars Kotthoff, Joaquin Vanschoren

This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself.

BY Physics.Math.Code


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/physics_lib/11731

View MORE
Open in Telegram


Physics Math Code Telegram | DID YOU KNOW?

Date: |

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

How Does Bitcoin Work?

Bitcoin is built on a distributed digital record called a blockchain. As the name implies, blockchain is a linked body of data, made up of units called blocks that contain information about each and every transaction, including date and time, total value, buyer and seller, and a unique identifying code for each exchange. Entries are strung together in chronological order, creating a digital chain of blocks. “Once a block is added to the blockchain, it becomes accessible to anyone who wishes to view it, acting as a public ledger of cryptocurrency transactions,” says Stacey Harris, consultant for Pelicoin, a network of cryptocurrency ATMs. Blockchain is decentralized, which means it’s not controlled by any one organization. “It’s like a Google Doc that anyone can work on,” says Buchi Okoro, CEO and co-founder of African cryptocurrency exchange Quidax. “Nobody owns it, but anyone who has a link can contribute to it. And as different people update it, your copy also gets updated.”

Physics Math Code from ms


Telegram Physics.Math.Code
FROM USA